SglCXFSClustered File System
from SGI

April 1999

R. Kent Koeninger Strategic Technologist, SGI Software kentk@sgi.com www.sgi.com

File Systems Technology Briefing

UNIX (Irix)

Applications

Clustered file system features: CXFS

CXFS

XFS

XVM

FC driver

- File System features: XFS
- Volume management: XVM

CXFS — Clustered SAN File System

CXFS: Clustered XFS

- Clustered XFS (CXFS) attributes:
 - A shareable high-performance XFS file system
 - Shared among multiple IRIX nodes in a cluster
 - Near-local file system performance.
 - Direct data channels between disks and nodes.
 - A resilient file system
 - Failure of a node in the cluster does not prevent access to the disks from other nodes
 - A convenient interface
 - Users see standard Unix filesystems
 - Single System View (SSV)
 - Coherent distributed buffers

Comparing LANs and SANs

LAN: Data path

through server (Bottleneck, Single point of failure)

SAN: Data path direct to disk (Resilient scalable performance)

Fully Resilient - High Availability

CXFS Interface and Performance

- Interface is the same as multiple processes reading and writing shared files on an SMP
 - Same open, read, write, create, delete, lock-range, etc.
- Multiple clients can share files at local file speeds
 - Processes on the same host reading and writing (buffered)
 - Processes on multiple hosts reading (buffered)
 - Processes on multiple hosts reading and writing, using direct-access IO (non-buffered)
- Transactions slower than with local-files:
 - Shared writes flush distributed buffers related to that file
 - Metadata transactions (file creation and size changes)

CXFS Scalability

CXFS Scalability

- Software supports up to 64 clients or servers per cluster
 - Fabric prices will tend to limit the host count to less-than 64

Multiple CXFS servers

- One per file system
- Normal local-host buffering for near local-file performance
 - Except when files are used for shared-reads-writes
 - Coherence maintained on a per I/O basis using tokens
- Files accessed exclusively locally on CXFS server see local XFS metadata performance (bypasses CXFS path)
- CXFS supports High-Availability (HA) environments with full fail-over capabilities
- CXFS sits on top of XFS: Fast XFS features

Page 11

Heterogeneous CXFS

- IRIX servers and clients in second half of 1999

 IRIX-XFS/XVM performance and file-system features
- Clients for Windows NT, Linux and other major UNIX system in 2000
 - Performance and features may be limited by particular OS interfaces
- Servers for Linux and possibly other OSes to follow

XFS: A World-Class File System

Speed

- Fast metadata speed
- High bandwidths
- High transaction rates
- Guaranteed-rate IO and real-time file systems
- Reliability
 - Mature log-based file system
- Scalability
 - 64 bit: 9 million terabytes
- Flexibility
 - Dynamic allocation of metadata space

Fast Metadata Transactions

- Efficient log-based transactions
- Rapid recovery from system interruptions
 - Avoids FSCK (many minutes on other file systems)
 - Sub-second file-system recovery times
- Efficient metadata techniques
 - Structured for fast searches
 - Rapid space allocation techniques

XFS Metadata Performance

- Fast crash recovery
 - Log based: No fsck
- Supports extremely large file systems
 - 64 bits and scalable structures
- Supports large sparse files
 - Full 64 bit direct addressing
- Supports large contiguous files
 - Efficient search algorithms and data structures
- Supports large directories
 - Efficient B-trees
- Supports large numbers of files
 - Dynamic allocation of inode space

XFS: Reliable and Quick Recovery

 Database log technology used for file system metadata management

-No UNIX *fsck* is needed

- High file system integrity
- Recovery time is independent of system size
 - -Depends on system activity levels
 - -Generally recovery requires only a few seconds
- Very high file system performance:
 - –Log implemented with advanced techniques that use fewer I/O operations than standard UNIX

Efficient Physical IO

Avoids unnecessary writes

- Asynchronous buffering
 - Delay writes as long as possible
- Contiguous allocation of disk space
 - Delay allocation of disk space by delaying writes
 - Avoids fragmentation
 - Tends to allocate large contiguous segments
- Well orchestrated data paths and buffer
 - Through volume manager on operating system

sgi

Scalability: Room to Grow

Disk drive growth remains exponential

- Recently 1.7 x per year
- Historically 10x every 10 years
- XFS' 64 bit address space exceeds even this projected exponential growth far into the future
 - $-2^{63}-1=9$ million terabytes =9 exabytes
- The price of the storage hardware and the channel capacity of the hosts are likely to be the limiting factors for growth, not XFS

Scalable Performance

- Peruse large file systems rapidly
 - B-tree structures and other sophisticated techniques

Supports huge file systems

- Large amounts of data
 - Huge numbers of files
 - Huge files
- Large numbers of disks
- Large file systems
 - Striped, mirrored, and concatenated file systems

XFS B-tree Directory Speed

XFS Data Bandwidth

 XFS delivered near raw I/O performance on the largest disk configuration we have been able to test

Over 4 Gbytes/second (read and write)

- Configuration:
 - 88 Fibre Channel loops, 8 disks per loop: 704 disks
 - One process—one file descriptor
 with parallel asynchronous I/O to a real-time file system
 - 32 processor Origin2000 system

Other XFS Features

• Guaranteed ratio IO (G	RIO)	
--------------------------	------	--

- Important for guaranteeing bandwidth for real-time and digital media applications
- Optimizations for real-time files
- Sparse file support
 - Holes allowed in files for large direct-access addressing
- Parallel space allocation increases speed
 - Fastest minute-sort and fastest terabyte-sort benchmarks
- DMAPI for hierarchical file systems (HFS)
 - Interfaces to SGI's Data Migration Facility (DMF) and third-party HSMs: Veritas, FileServ, ADSM

XVM: Volume Management

XVM - Volume Management

- Striping, mirroring, and concatenation of volume elements
 Flexible combinations of mirroring and striping
- Thousands of disks: E,g,. 64K stripe width
 - Practically unlimited
- Self identifying volumes
- Subvolumes separate data, log, and real-time information
- On-line configuration changes
- Clustering support (multi-host volume sharing)

XVM Performance

- Performance measured on XVM predecessor: XLV

 With modifications to XLV
- Same hardware configuration as in previous XFS performance slide
 - 88 Fibre Channel loops, 704 disks, 32 PE O2K
- Near raw I/O disk speed
 - Over 4 Gbytes/second (read and write)

Summary

- CXFS is the highest-performance shared-file system
 With full resilience (High Availability)
- XFS and XVM are fastest and most scalable file-system and storage management technologies available
 - High bandwidth, fast metadata, fast recovery, flexible, huge address space, huge volume capacity, feature rich

CXFS — Clustered SAN File System

